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Recap from Networking

● In the Lecture we rushed through the most important computer networking concepts:
– Layered networking stack with different protocol layers:

● Physical layer
● Data Link Layer (layer 2) (e.g. Ethernet, or Wifi)
● Network Layer (layer 3) (e.g. IP)
● Transport Layer (layer 4) (e.g. TCP or UDP)
● Session, Presentation and Application Layer (e.g. HTTP)

– The following concepts were explained:
● Router : working on Network Layer (layer 3)
● Network Switch : working on Data Link Layer (layer 2 )

– We mentioned the hierarchical structure of the Internet divided into a tree of subnets.
– We explained the use of private subnets reserved for home/office networks
– We explained the usage of NAT (Network Address Translation)
– We explained DNS and DHCP services
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Recap from Networking

● We connected the ESP32 to a WIFI network
– We could read the obtained IP address, the network mask, the gateway and the DNS from the 

ESP32.
– All these IP addresses and the mask are obtained from the DHCP server.
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Preamble

A very sad story...
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 Python and modern computer hardware

● Modern Computing hardware
– Many cores (~100 in new CPUs)
– Progress: more cores at constant clock speed
– Software: multiple threads executed concurrently

● The Python programming language
– No support for concurrent execution
– The famous GIL (Global Interpreter Lock)

makes sure that only one thread at a time
is running

– ??? Why on earth did and do the python developers go down this road ??? 
● Easier and more lightweight memory management
● More efficient (=fast) single threaded programs
● Easily interface to many C-libraries which itself are not thread-safe

– (A function is thread-safe if it can be entered by a second thread of execution before a previous 
execution has left the function)

Compatible ?
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Python and concurrency

● What can we do about this?
– You CAN program multiple threads in python, but they are only one thread at a time is executed. 

This can be useful when a thread waits for IO (e.g. Keyboard input, a new value from a sensor 
measurement, …)

– You can use multiprocessing:
● This means multiple processes (=programs) are launched on the computer
● Different instances of python interpreters are created in this case → each one has its own GIL → they 

can run at the same time on different cores of the CPU
● Drawbacks: 

– Spawning a process is more expensive (= takes longer) than spawning a new thread
– More memory is needed
– Exchanging information between two processes is clumsy/expensive:

● No shared memory resources between different processes exists
● You need to create files, Pipes, shared memory regions, sockets or other complex 

constructs to transfer information from one process to the other (better than nothing 
though...) 
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After this shock...

Asyncio
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Asyncio: a convenience

● ALWAYS REMEMBER: Asyncio is not a magic solution to the problems discussed above

● What is Asyncio:
– It is a convenient way to write a program when you have to do different things in your program but 

often you need to wait for Input from outside (or for being able to transmit your output)
● Many of the programs with a GUI (Graphical User Interface) fit in this category: 

The user gives some input and then something is calculated or processed and finally the result is 
provided

– A pocket calculator
– A program to collect data from sensors and display then (may be after some calculations)
– A WEB server
– A GPS for a bike or a car
– …

– Asyncio can manage multiple activities or tasks and decides what to run next. It only executes 
one task at a time. But when the running task starts waiting for input or decides to pause, then 
Asyncio chooses another task to run during this pause (in a fair way so that every task gets the 
possibility to run): This technique is called “Cooperative Scheduling”
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Elements of Asyncio programming (1)

● Task
– A task in Asyncio is similar to a stand-alone program in some aspects

● it has it’s own stack and it’s own local variables. 
– However, it is part of a main program (with other tasks).

● It can share variables with other tasks of the same program. Hence data exchange between tasks is 
easy

– An asyncio program contains multiple tasks
● They implement the various activities which need to be done by the program

● Event Loop
– The Event Loop is the “main program” of an asyncio program. 
– It is not programmed by the user but it is part of the Asyncio machinery
– It is deciding which task is running next (it manages the tasks)

● This activity is called “scheduling”
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Elements of Asyncio (2)

● Coroutine
– Similar to a function
– The corouting implements the activities to be done in a task. 

● It is the python code running in the task. 
● A task can contain multiple co-routines (but at least one)

– Uses the stack of the task it is running in (like a function)
– Asyncio feature: A coroutine can decide to pause execution (“yield the executing control”)

● In this case the Event Loop gives the execution control to a different task and resumes execution in that 
task where ever it stopped the last time it ran.

● A co-routine always resumes execution (if the associated task is selected by the EventLoop) at the 
statement following the pause.

– A coroutine can exit and return results (like a “normal” function)

– Technical:
● A Coroutine in python is defined with the async keyword

async def mycoroutine( par1, par2):
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Elements of Asyncio (2)

● Calling or executing a coroutine
– There are 2 ways to execute a co-routine:

● You execute it in the context of the current task
● You create a new task which executes the coroutine

● Calling a coroutine within a tasks

await mycoroutine(par1, par2)

– Attention: If you call a coroutine like a normal function “nothing happens”:
mycoroutine(par1, par2)

● This call returns an “instance-object” of the coroutine but nothing is executed
● Await tells the python interpreter to run the co-routine and wait for it to yield execution

● Create a new task which executes the coroutine
asyncio.create_task( mycoroutine(par1,par2) )
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Elements of asyncio (3)

● Awaitables
– Awaitables are objects which you can wait for in an asyncio program. During the waiting time the 

EventLoop will make sure that another task can run.
– To wait for a awaitable you use

await awaitable
● This statement always yields the execution control

– Coroutines are awaitables (as we have seen above)
– Asyncio provides other “awaitables” like Locks, semaphores, queues 
– Libraries provide coroutines you can wait for. An often used example:

await asyncio.sleep(n)
● This means: wait at least n seconds (other tasks will run during this time) until you give the execution 

control back to this task (and this coroutine)
● The time cannot be precise since after n seconds the currently running task has to pause before the Event 

loop gets a chance to execute this task again.

– Also the asyncio library provided in micropython provides many useful networking coroutines 
some of which we will use in the exercises.
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WARNING

Asyncio programming is not easy

You need to get used to a new way of thinking… this takes some time...

(normally we are used to think in sequential program execution)

However:

asyncio programming is easier than programming in a multi threaded environment like usually 
used in FreeRTOS and similar real-time operating system

asyncio is still a single threaded environment (remember the GIL)

I decided to insert this chapter here since it shows you some basics of Real Time Operating 
systems like FreeRTOS (concept of tasks, synchronization and a scheduler with cooperative 
scheduling) but it still much simpler than programming a C-application in FreeRTOS.
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Exercises

● We program a little web server using the tools provided by asyncio
– Reference is the micropython asyncio documentation

● Navigate the documentation to “Python standard libraries and micro-libraries” → asyncio
– You find a subset of the standard asyncio features which are implemented in micropython at the 

beginning of the documentation. 
– In the section “TCP stream connections” you find the components/functions you will need to 

implement the web server.
● “start_server”
● “Stream” 
● “read” or better: “readline”, “write” and “drain”
● “close” and “wait_close” (for Stream and for the Server)

– For all routines note carefully which are co-routines and hence you need to invoke them with 
await (or you create a task with them using create_task)

– The web server should display data from our sensor. 
– You can start from the code template (to make things simple and since we want to learn how to 

write a server, we just simulate the sensor data with random data, or use a fixed value. 
Afterwards you can add the real sensor reading code, if your want.)
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