
1

Recap asyncio

● Asyncio is a simple framework allowing for cooperative scheduling

– The activities of the program are executed in coroutines running in tasks
– Coroutines yield (=give up) execution control when they have to wait for some input or output
– The Event Loop decides which task is run next, when the current task yields.
– The programmer decides when each coroutine yields

– However, Asyncio cannot change the fact that in python only one thread can run at a time

2

Recap: Web Server

● Web Server: Basics of HTTP
– The HTTP protocol is defined by Requests and Responses
– Request:

● Different classes of requests exist: GET and POST are mostly used for web servers
● A series of ASCII lines form a header
● Followed by an empty line
● Some more ASCII data might follow (not the case for simple GET request, but for POST requests)

– Response:
● A header with some ASCII lines
● Followed by an empty line
● Usuall followed by some data (e.g. the web page to be displayed by the browser)

3

Exercises

● Always remember:

– What you need in your program must be uploaded to the microctontroller :

mpremote cp source :.

● The file style.css for the exercise (to nicely format the page) is now also included in the code
template

● One of you yesterday had a nice idea for improvement:
– It would be better to have the web page also in a separate file and be served with the “sendFile”

function
● Allows for easier editing of the web page contents
● Cleanly separates web content from program code
● Need to provide techniques to replace some parts of the web page dynamically (i.e. before sending the

page to the browser): in our case the sensor values have to be updated.

4

Microcontrollers

Part VI

MQTT basics

(Christoph.Schwick@cern.ch)

https://microcontroller-course.web.cern.ch

https://microcontroller-course.web.cern.ch/

5

● MQTT was originally developed by IBM to monitor oil pipelines over a satellite

● Requirements:
– Very robust
– Simple (especially for the senors which need to send their data: they are small devices like

microcontrollers)
– No high data bandwidth required.

● MQTT is an application protocol: it needs a reliable underlying network protocol.
– Usually TCP/IP is used.

MQTT

6

MQTT Basics

● MQTT is a “Publisher Subscriber” Protocol
– Requires a central entity: the “broker”
– Each client connects to the broker
– Decoupling of data senders and consumers

→ Robustness

● Messages are sent in “topics”
– They have a topic name (see later)
– They have payload (the real data)
– Data can be anything

● Clients subscribe to topics they are
interested in

● Clients “publish topics” to the broker
– They will then be delivered to all subscribers of the topic

● Clients can joint a leave the network at any time without the system breaking down
– However, the broker needs to stay up and running

7

MQTT topics

● Published messages (=data) are called topics and have an unique topic-names

● Topics are organised in a hierarchical structure (via there names)
– The names are written like a directory path e.g.:

● home/living-room/light
● home/living-room/store
● home/bedroom/temperature

● Topic names are used to publish messages and to subscribe to messages

● When subscribing to topics you can use wildcards:
– home/+/temperature : means subscription to temperature values of all rooms (assuming that the

second component of the topic is the room name; the ‘+’ is the placeholder for “any single
subtopic” at this point in the hierarchy.) → The ‘+’ stands for anything except for a ‘/’.

– home/# : means subscription to all messages from “home/{anything}”
The ‘#’ has to be always the last character in the expression, if used.
The ‘#’ stands for anything possibly including ‘/’ and subtopics

8

MQTT : QoS

● There are three different QoS levels in MQTT (0,1, 2):
– QoS = 0: “Fire and Forget” → A message is sent to the broker and from the broker to the client

and it is “assumed to arrive”. If for any reason the message does not arrive (e.g. the client has a
problem) the message is lost for that client.

MQTT BrokerMQTT Client

PUBLISH QoS 0

9

MQTT : QoS

● There are three different QoS levels in MQTT (0, 1, 2):

– QoS = 1: The message is guaranteed to be sent at least once to the subscriber (by the broker)
● This is done with a protocol requiring the receiver to acknowledge the reception of the message. The

receiver can be either the broker or the subscribed client. Messages which are not acknowledged will
be re-sent by the sender after a time-out time.

MQTT BrokerMQTT Client

PUBLISH QoS 1

PUBACK

10

MQTT : QoS

● There are three different QoS levels in MQTT (0, 1, 2):
– QoS = 2: the message is delivered exactly once to the client.

● Here a double handshake is done: the receiver acknowledges the reception of a message with a
“PUBREC” packet. The sender then discards the message and sends a PUBREL message indicating
that the message has been release and from now on the message will not be re-sent anymore. The
receiver again acknowledges the reception of the PUBREL message with PUBCOMP packet. At this
point the sender can totally forget about the transfer. All messages are being re-sent if the respective
acknowlege is not received withing a time-out period.

MQTT BrokerMQTT Client

PUBLISH QoS 2

PUBREC

PUBREL

PUBCOMP

11

Connection to the Broker

clientId: unique identifier

cleanSession: Information about session will
be saved (e.g. subscribed topics). Will be used
to restore session on dis-connect → re-connect

lastWill : If client disconnects for any reason
the broker will send the lastWillMessage to
clients which subscribed to lastWillTopic. (All
this only if lastWill fields have been set)

keepAlive : a time-out period after which the
connection is shut down if no message is sent
during this time. To avoid this clients send
“ping” messages in intervals smaller than this
timeout (if no other messages are sent)

12

Publish message

packetId: unique identifier (together with
clientId) for the transaction. Generated by
client. Used for qos>0 to associate
acknowledge messages to specific transaction.

retainFlag: If true broker memorises the last
published message for the topic and
immediately sends it to clients on subscription
to this topic. Note: a retained message can only
be deleted from the broker by a client
publishing a message with a 0-byte payload to
that topic.

dupFlag : Set by client if a publish message is
re-sent after the timeout (relevant for qos>0).

13

Subscribe message

As can be seen subscribe messages can be
chained in a single message:

This means with a single message a client can
subscribe to multiple topics.

Subscriptions are acknowledged with packets
contains a return code for every subscription:
The return code is the qos level on success or
0x80 on failure

0

14

Un-subscribe message

As can be seen also the un-subscribe
messages can be chained in a single message:

This means with a single message a client can
un-subscribe from multiple topics.

Un-subscriptions are acknowledged with a very
simple acknowlege packet

15

MQTT v5 enhancements

● Note:
We gave an overview on MQTT v3 in this course. The latest protocol is MQTT v5 which has
some additional features:

● Custom key-value pairs in headers which opens the possibility to custom enhancements
● Reason codes are available to allow diagnosing protocol errors if they occur
● Clean Start flag upon connection allows to request to force a clean start of a session (also if the

previous session had the cleanSession flag set to False)
● Non trivial authentication is supported
● The broker is allowed to gracefully disconnect from a client
● Retransmission of packets on TCP networks only occurs if the network connection is compromised

16

Remarks to the exercise

● Use a json configuration file for setting parameters for

Be aware that “yourname” should be unique, so may be also add the first letter of your surname

● The MQTT server IP will have to be confirmed during the exercise (it is not guaranteed that my computer
always gets the same IP, and we do not have a nameserver in our mini lab system, so we cannot use
hostnames).

● The alt0 (altitude of Padova) is just given to convert the pressure to 0 sea level. (Well, here in Padova we are
almost at sea level, however in Geneva I have to enter here 428m)

{
 "ssid" : "student12",
 "password" : "$unilab1",
 "mqtt_server" : "10.42.0.181"
 "client_id" : "[yourname]",
 "mqtt_topic" : "sensors/[yourname]",
 "mqtt_publish_iv" : 10,
 "alt0" : 12
}

17

Remarks to the exercise

● Please add your coordinates to the json file you send to MQTT:
– Add a field ‘row’ with the row number of your bench: we start counting from the blackboard to the

projector screen. The row where I have my computer is row number 0
– Add a field ‘column’ with the place number within the row (we start counting from the corridor to

the window i.e. 0 to 3.
– Finally add a field ‘name’ with your name (or “artist name”)

 message = {
 "temperature" : temp,
 "pressure" : p0,
 "humidity" : hum,
 "row" : {row},
 "col" : {col},
 "name" : “{your name}”
 }

18

The mqtt library for ESP32

● In the exercise we use a very simple mqtt client library called

umqtt.simple

– This library in part of the micropython installation
– Documentation is not very detailed:

https://mpython.readthedocs.io/en/v2.2.1/library/mPython/umqtt.simple.html
– The best documentation is the code itself:

https://github.com/micropython/micropython-lib

– In our exercise we just need the connect() and the publish() calls. (We only use qos=0)

https://mpython.readthedocs.io/en/v2.2.1/library/mPython/umqtt.simple.html
https://github.com/micropython/micropython-lib

19

In case you want to play at home...

● If you want to play with MQTT at home you need a MQTT Broker

● A very widely used broker which works very well (we use it during the exercises) is the
“mosquitto” broker.

– Linux distributions usually contain this broker as an installable package
– On Ubuntu you can do “apt-get install mosquitto”
– The package also contains command-line tools for publishing and subscribing to topics. This is

useful for testing and monitoring what you send to the broker from you microcontroller
– Mosquitto also runs on other platforms (Windows, Mac)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

