

Recap from Wednesday

- The MQTT protocol was discussed:
 - Publisher Subscriber model with a Broker as central entity
 - Messages are called "topics" which have a name and an arbitrary payload
 - Topic names are organized in a tree hierarchy like directories. (They are also written with the same syntax as Linux directories)
 - Messages can have three different QOS
 - Clients can connect or disconnect from the broker at any time.
 - There are some interesting options during connect or publishing:
 - last Will, cleanSession, retain
- In the exercises we extended the Sensor readout program to publish on a MQTT network
 - All groups succeeded within the time of the exercise because:

A) You are very good of course :-)

B) MQTT is really relatively simple to handle and very user-friendly

Microcontrollers

Part VII

(Christoph.Schwick@cern.ch)

https://microcontroller-course.web.cern.ch

Going further with microcontrollers

- We programmed the microcontroller in Python
 - This is perfectly fine when only moderate performance is required
 - IoT applications are a perfect use-case for this kind of programming
 - However, you will never be able to unleash the full power of your microcontroller with micropython...
 - it is just way too slow,
 - it has no real-time capabilities (or very limited ones only)
 - especially there is no way to handle multiple threads with clear scheduling priorities
 - it has not way to use both cores of the microcontroller
 - This is not a criticism of micropython but just states that micropython is not the correct solution for all possible problems
 - If you CAN solve a problem in micropython you are usually MUCH quicker to implement the solution in micropython than doing the same thing is 'C'

Going further

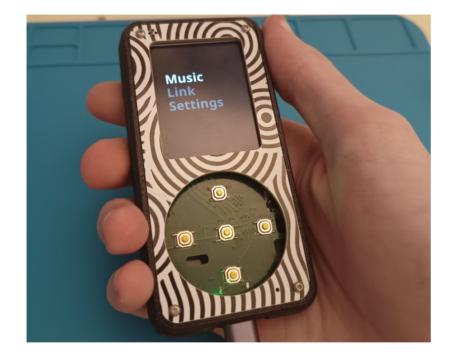
- If you want to see what is possible to do with the microcontroller you will need to master two topics
- Development system for "C" code:
 - You need some experience in C programming (or need to be willing to learn C)
 - Develop code of the esp32 with a "C" (or "C++") development system.
 - For the ESP32 this is provided by Expressif (the company building the ESP32 chip)
 - It is well documented.
 - It is relatively straight forward to use. (You will have to learn about the cmake build system)
 - There are tons of running examples which come with the development system.
 - No fancy GUIs are used. You can use your favorite editors if you want.
 - The Arduino system uses the Expressif development system under the hood.

Going Further

- You need to learn FreeRTOS
 - RTOS stands for Real Time Operating System
 - FreeRTOS is a very mature RTOS used widely in industry (or research)
 - It is a good investment to learn this system.
- Why do we need an RTOS on a microcontroller
 - Very often a microcontroller application can be split into different "tasks" which have to be done.
 - Each of the task can be programmed separately (like a subroutine)
 - Of course you will often need some data exchange and communication between the tasks
 - Usually tasks have different priorities and "real time requirements"
 - If a user clicks on a button on a screen to open a new menu on a screen the response time can be as slow as the typical reaction time of human beings (some 100 ms)
 - If a sensor detects some mal-functioning in a dangerous machinery the reaction time must be guaranteed to better than some well defined maximum.
 - An RTOS does exactly this: it provides tools to prioritize many different tasks of the same application.
 - Also tools for communication between the tasks are provided.

Going Further

- The web site provides a section with a discussion of task scheduling in FreeRTOS.
 - If you are interested to go further read that section.
 - If afterwards you are still interested you can dive into the FreeRTOS tutorial which is an excellent documentation of the FreeRTOS system.
- Links to the FreeRTOS documentation are contained on the web page
- Btw, FreeRTOS you can also run on your computer (simulators for Windows or Linux) so that you can do tests.
 - It is "free"
 - It is "small" (the kernel is only ~60kB large !!! It is made for microcontrollers!)



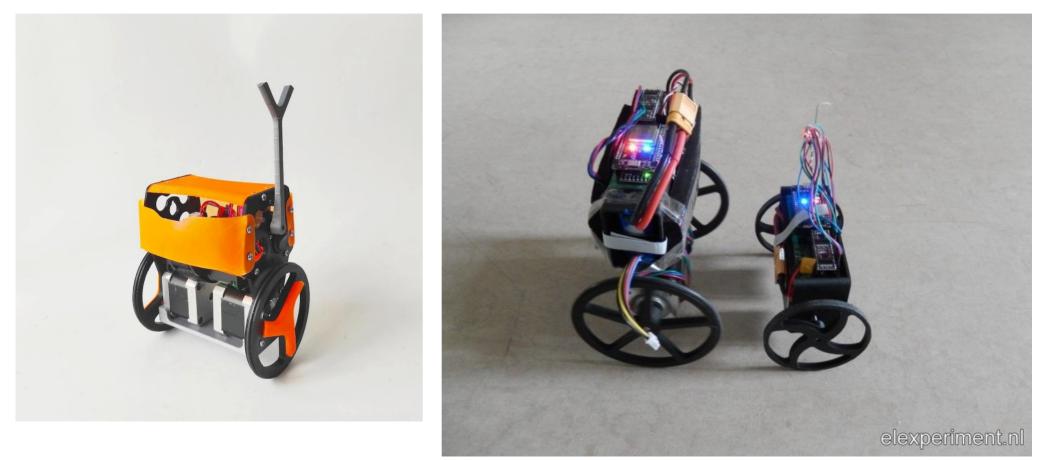
https://github.com/schreibfaul1/ESP32-MiniWebRadio

Examples

https://picockpit.com/raspberry-pi/paragon-project-a-portable-music-player/

https://github.com/Bellafaire/ESP32-Smart-Watch

Exa	m	pl	les


Feels Like 56° 59°(36° 59°(36° 59°(36°) 59	Sun Mon Tue Wed
--	-----------------

https://github.com/Imarzen/esp32-weather-epd

In case you want to do a project with microcontrollers

The GOLDEN choice !!!

- Invent your own project
 - If you have an idea of something which interests you come to us and discuss. This is the best way to start !!!
 - You will learn most like this
 - You will have most fun like this
 - Of course you can always ask for advice if you get stuck (this is muuuuch better than copying something from the web!)
 - It seems that there is the possibility to purchase (...in some limits, of course...) also new hardware for the project in mind:
 - You need an ADC or DAQ with different specs than the internal ADCs or DACs?
 - A Sound input or output (I2S DAQ or I2S microphone)?
 - A Stepper motor or Servo (with driver electronics)?
 - A TFT (touch?) display
 - Tell us what you need and I will see with Prof Andrea Triossi if the Uni can purchase the required item.
 - If you want to purchase stuff privately since you want to keep it I am happy to share my personal experience with you. (I do not have a very wide overview and it will not reduce any kind of risk... but I can tell you about the problems I had so far...

Hardware you can have for your project

- Microcontrollers
 - If you need more than one this should be ok.
 - If you want to build a 1000 Core cluster we run into problems...
- Ditital microphone (I2S interface)
- High quality stereo audio output (I2S \rightarrow headphone)
- Servos
- Step-motors
- TFT displays
- GPS Unit
- If you need something else it probably can be purchased (...in some limits...):
 - Accelerometer / gyroscope are very nice to play with...

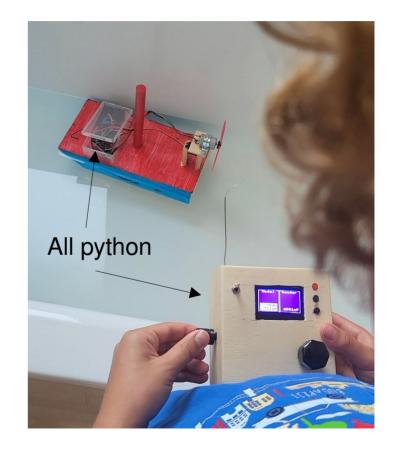
In case you want some appetizers:

- An ALARM clock
 - Analogue display
 - Time setting via NTP (from NTP server over WIFI)
 - Show date
 - Touch pins to change brightness / disp on / off or more?
 - May be settings like alarm time/melodie/... over MQTT???
- Voltmeter or Oscilloscope (or could use digital microphone as input)
 - How fast can you go?
 - Do you need "C" here?
- Histogramming of sensor history
 - Touch pins to change which sensor to display
 - Auto-scale? Change scale manually?
- Games (Using a TFT display)
 - Snake, Tetris, other vintage games, or whatever comes to your mind
 - Requires some input buttons (or touch buttons) which you can get

Appetizers for projects

- Calculus trainer
 - Make exercises with proposed solution → answer is "right" or "wrong" (needs two touch pins)
 - Measure performance (answers per time: percentage correct/wrong... invent metrics)
 - Change type and difficulty of calculations
- Chat Client with MQTT
 - use last will (when members leave)
 - This requires a keyboard for entering text (can use computer for the project)
 - Invent some extra features, otherwise this project is too easy....

• A digital photo frame


- Requires a TFT display (with slot for SD card)
- Possibly decodes jpg photos (there are existing libraries for this, this lib you do not need to write yourself)
- What about scaling pictures to the right format? (...not trivial...)
- Speed measurement device?
 - Need some kind of sensor or a pair of sensors.

Appetizers for projects

- Music generator
 - Play music
 - Generate nice sounds
 - Interpret (simple) midi files
 - Internet radio (C/C++)
 - Synthesizer (C/C++)
- Make a walky talky (C/C++ I guess)
 - I2S microphone and speaker
 - Communicate over WIFI: TCP/IP or UDP?
 - what is the latency?
- Remote controlled car/boat/plane ?
 - Needs servos and motors and mechanics...
 - May be somebody has an old car or boat at home which can be equipped with a ESP32 remote control?

