
1

Recap from Wednesday

● The MQTT protocol was discussed:
– Publisher Subscriber model with a Broker as central entity
– Messages are called “topics” which have a name and an arbitrary payload
– Topic names are organized in a tree hierarchy like directories. (They are also written with the

same syntax as Linux directories)
– Messages can have three different QOS
– Clients can connect or disconnect from the broker at any time.
– There are some interesting options during connect or publishing:

● last Will, cleanSession, retain

● In the exercises we extended the Sensor readout program to publish on a MQTT network
– All groups succeeded within the time of the exercise because:

A) You are very good of course :-)
B) MQTT is really relatively simple to handle and very user-friendly

2

Microcontrollers

Part VII

Going further with microcontrollers

… some appetizers...

(Christoph.Schwick@cern.ch)

https://microcontroller-course.web.cern.ch

https://microcontroller-course.web.cern.ch/

3

Going further with microcontrollers

● We programmed the microcontroller in Python
– This is perfectly fine when only moderate performance is required
– IoT applications are a perfect use-case for this kind of programming
– However, you will never be able to unleash the full power of your microcontroller with

micropython…
● it is just way too slow,
● it has no real-time capabilities (or very limited ones only)

– especially there is no way to handle multiple threads with clear scheduling priorities
● it has not way to use both cores of the microcontroller

– This is not a criticism of micropython but just states that micropython is not the correct solution for
all possible problems

– If you CAN solve a problem in micropython you are usually MUCH quicker to implement the
solution in micropython than doing the same thing is ‘C’

4

Going further

● If you want to see what is possible to do with the microcontroller you will need to master two
topics

● Development system for “C” code:

– You need some experience in C programming (or need to be willing to learn C)
– Develop code of the esp32 with a “C” (or “C++”) development system.
– For the ESP32 this is provided by Expressif (the company building the ESP32 chip)
– It is well documented.
– It is relatively straight forward to use. (You will have to learn about the cmake build system)
– There are tons of running examples which come with the development system.
– No fancy GUIs are used. You can use your favorite editors if you want.
– The Arduino system uses the Expressif development system under the hood.

5

Going Further

● You need to learn FreeRTOS

– RTOS stands for Real Time Operating System
– FreeRTOS is a very mature RTOS used widely in industry (or research)

● It is a good investment to learn this system.

● Why do we need an RTOS on a microcontroller

– Very often a microcontroller application can be split into different “tasks” which have to be done.
– Each of the task can be programmed separately (like a subroutine)

● Of course you will often need some data exchange and communication between the tasks
– Usually tasks have different priorities and “real time requirements”

● If a user clicks on a button on a screen to open a new menu on a screen the response time can be as slow as the typical
reaction time of human beings (some 100 ms)

● If a sensor detects some mal-functioning in a dangerous machinery the reaction time must be guaranteed to better than some
well defined maximum.

– An RTOS does exactly this: it provides tools to prioritize many different tasks of the same application.
– Also tools for communication between the tasks are provided.

6

Going Further

● The web site provides a section with a discussion of task scheduling in FreeRTOS.
– If you are interested to go further read that section.
– If afterwards you are still interested you can dive into the FreeRTOS tutorial which is an excellent

documentation of the FreeRTOS system.

● Links to the FreeRTOS documentation are contained on the web page

● Btw, FreeRTOS you can also run on your computer (simulators for Windows or Linux) so that
you can do tests.

– It is “free”
– It is “small” (the kernel is only ~60kB large !!! It is made for microcontrollers!)

7

Examples

https://github.com/schreibfaul1/ESP32-MiniWebRadio

https://github.com/schreibfaul1/ESP32-MiniWebRadio
https://github.com/schreibfaul1/ESP32-MiniWebRadio

8

Examples

https://picockpit.com/raspberry-pi/paragon-project-a-portable-music-player/

https://picockpit.com/raspberry-pi/paragon-project-a-portable-music-player/

9

Examples

https://github.com/Bellafaire/ESP32-Smart-Watch

https://github.com/Bellafaire/ESP32-Smart-Watch

10

Examples

https://github.com/lmarzen/esp32-weather-epd

https://github.com/lmarzen/esp32-weather-epd

11

12

In case you want to do a project

with microcontrollers

13

The GOLDEN choice !!!

● Invent your own project

– If you have an idea of something which interests you come to us and discuss. This is the best way to
start !!!

● You will learn most like this
● You will have most fun like this
● Of course you can always ask for advice if you get stuck (this is muuuuch better than copying something

from the web!)
– It seems that there is the possibility to purchase (...in some limits, of course…) also new hardware for

the project in mind:
● You need an ADC or DAQ with different specs than the internal ADCs or DACs?
● A Sound input or output (I2S DAQ or I2S microphone)?
● A Stepper motor or Servo (with driver electronics)?
● A TFT (touch?) display

– Tell us what you need and I will see with Prof Andrea Triossi if the Uni can purchase the required item.
– If you want to purchase stuff privately since you want to keep it I am happy to share my personal

experience with you. (I do not have a very wide overview and it will not reduce any kind of risk… but I
can tell you about the problems I had so far…

14

Hardware you can have for your project

● Microcontrollers
– If you need more than one this should be ok.

● If you want to build a 1000 Core cluster we run into problems…

● Ditital microphone (I2S interface)

● High quality stereo audio output (I2S → headphone)

● Servos

● Step-motors

● TFT displays

● GPS Unit

● If you need something else it probably can be purchased (...in some limits...):
– Accelerometer / gyroscope are very nice to play with...

15

In case you want some appetizers:

● An ALARM clock
– Analogue display
– Time setting via NTP (from NTP server over WIFI)
– Show date
– Touch pins to change brightness / disp on / off or more?
– May be settings like alarm time/melodie/… over MQTT???

● Voltmeter or Oscilloscope (or could use digital microphone as input)
– How fast can you go?
– Do you need “C” here?

● Histogramming of sensor history
– Touch pins to change which sensor to display
– Auto-scale? Change scale manually?

● Games (Using a TFT display)
– Snake, Tetris, other vintage games, or whatever comes to your mind
– Requires some input buttons (or touch buttons) which you can get

16

Appetizers for projects

● Calculus trainer
– Make exercises with proposed solution → answer is “right” or “wrong” (needs two touch pins)
– Measure performance (answers per time: percentage correct/wrong… invent metrics)
– Change type and difficulty of calculations

● Chat Client with MQTT
– use last will (when members leave)
– This requires a keyboard for entering text (can use computer for the project)
– Invent some extra features, otherwise this project is too easy….

● A digital photo frame
– Requires a TFT display (with slot for SD card)
– Possibly decodes jpg photos (there are existing libraries for this, this lib you do not need to write

yourself)
– What about scaling pictures to the right format? (...not trivial...)

● Speed measurement device?
– Need some kind of sensor or a pair of sensors.

17

Appetizers for projects

● Music generator
– Play music
– Generate nice sounds
– Interpret (simple) midi files
– Internet radio (C/C++)
– Synthesizer (C/C++)

● Make a walky talky (C/C++ I guess)
– I2S microphone and speaker
– Communicate over WIFI: TCP/IP or UDP?
– what is the latency?

● Remote controlled car/boat/plane ?
– Needs servos and motors and mechanics…
– May be somebody has an old car or boat at home

which can be equipped with a ESP32 remote control?

All python

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

